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ABSTRACT
Graph Neural Networks (GNNs) have recently emerged as power-
ful tools for learning latent node representations from large-scale
graphs. However, most GNN models only consider pairwise or lo-
cal patch connectivity of nodes when constructing representations,
ignoring higher-order structural information in the graph. Higher-
order structures such as cliques are at the scale of small subgraphs
and encode group interactions between sets of nodes, which can
provide richer substructure information on the graph.

In this paper, we propose a new objective for learning node
representations. This objective accounts for local neighborhood
information of nodes as well as their higher-order connectivity
information, captured via maximal cliques. Our framework is ag-
nostic to the choice of representation learning model and can be
used with any representation learning GNN model in literature.

We provide experimental results for evaluating the representa-
tions learned by our clique-guided approach on multiple real-world
datasets and popular GNN models. Our results demonstrate that
utilizing clique structures in the training process improves the
performance of the GNN models. We also compare our representa-
tions to baselines that incorporate other notions of higher-order
information.
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1 INTRODUCTION
Graphs describe complex relationship structures between data in
many fields, such as social network analysis [5], genomics [4], and
communication networks [20]. Many important problems in the
machine learning community involve graph-structured datasets.
For e.g., in social networks, we may be interested in predicting the
existence of a link between users [27]. In biology, we may want
to identify proteins in a disease pathway given their interaction
graph [1, 24]. In recommender systems, we may want to predict if
a user will like a particular product based on their past purchases
[11, 14]. A fundamental aspect of these settings involves learning a
representation for elements in the graph, such as nodes, edges, or
the graph itself. These representations encode the structural con-
nectivity of the underlying graph and any feature inputs associated
with the graph elements. Learning high-quality representations can

∗Work done during internship at Amazon LLC.

Figure 1: Example undirected graph with cliques

improve downstream tasks, such as predicting characteristics of
graph elements (e.g., node/edge/graph classification).

In this work, we focus on the paradigm of self-supervised rep-
resentation learning for nodes, where labels are absent and the
representations are learned solely with the graph connectivity in-
formation. Specifically, we study this problem in the context of
Graph Neural Networks (GNNs). GNNs have emerged as a power-
ful tool to learn rich representations from graphs in a data-driven
manner [9, 30]. There has been a significant amount of interest
in this area, with many self-supervised GNN models having been
proposed in literature [8, 9, 18, 25, 26].

Typically, GNNs learn node-level representations by aggregating
pairwise or local neighborhood information in the graph. Most of
these methods do not use higher-order structural structures, which
encode interactions between groups rather than pairs of nodes.
These structures are crucial to the organization of many complex
networks [21, 28, 29]. An important and well-studied higher-order
structure in graph theory is a clique, which is a complete subgraph
in which each node can reach every other node in exactly one hop.
A maximal clique is a clique that cannot be extended any further
by including an additional node. These structures encode dense
connectivity properties of the underlying graph and define the
boundary of highly related sets of nodes in the networks. Nodes
in the same cliques may share common properties or have similar
functions within the network [21].

Maximal cliques have several interesting properties that are rel-
evant to the representation learning problem. They are isomorphic
structures where all nodes in a clique carry equal importance to the
clique, relaxing the need to distinguish these nodes from each other.
In addition, they are better at extracting overlapping structures
in natural small world graphs when compared to other higher-
order structures like clusters. As an example, consider the graph
presented in Figure 1. The Fiedler vector1 of this graph used in
1The Fiedler vector of a connected, undirected graph G is defined as the eigenvector
corresponding to the second smallest eigenvalue of the Laplacian matrix of G.



spectral clustering partitions the nodes into the sets {1, 2, 3} and
{4}. Meanwhile, it is obvious that there is an overlapping structure
in this example, {1, 2, 3} and {2, 3, 4}, which forms the two maximal
cliques. While maximal cliques provide useful connectivity infor-
mation about the node interactions, they come with computational
costs. It is well known that the problem of extracting all maximal
cliques in a graph is NP-complete [15].

In this paper, we utilize the structural information of maximal
cliques in a graph to improve the quality of node representations
learned by self-supervised GNN models. To this end, we propose
a novel method to extract a set of maximal cliques by greedily
probing nodes of interest, defined by a centrality measure. This
provides an efficient heuristic to yield a candidate set of maximal
cliques covering all nodes in the graph. Using the obtained clique
assignments, we formulate a novel objective for the self-supervised
training of GNN models, which takes into account both the tradi-
tional graph reconstruction objective as well as an objective based
on clique information. In this clique-based objective, representa-
tions of nodes belonging to the same maximal clique are brought
closer to each other, while representations of nodes that have very
little overlap across different maximal cliques are pulled farther
apart. Such representations provide richer information about the
spatial context of nodes compared to traditional self-supervised
GNNs. We show that our objective leads to significant performance
gains in downstream tasks. Our contributions are as follows:
• We introduce the concept of probing a graph to discover
maximal cliques. Specifically, we formulate the problem of
finding a maximal clique given a probe as a relaxed linear
program, which can be solved efficiently via popular off-the-
shelf solvers. Using this idea, we design a greedy probing
strategy based on node centrality measures to yield a set of
maximal cliques covering all the nodes in the graph.
• We develop a novel objective for self-supervised GNN train-
ing to learn representations accounting for both local and
higher order connections of a node. Our proposed approach
is agnostic to the choice of the base GNNmodel used in train-
ing and can be used on top on any popular representation
learning model which learns latent node representations.
• We provide experimental results on real-world datasets and
demonstrate the effectiveness of learning representations
using our novel objective for multiple popular GNN models
in the literature.We further provide comparison of our clique-
guided representation learning approach to learning with
other notions of higher order structures like clusters.

2 PROPOSED FRAMEWORK
In this section, we describe our end-to-end framework for the self-
supervised learning and evaluation of clique-guided node represen-
tations. Before delving into the technical aspects of our proposed
framework, we first establish the notations we will use.

2.1 Notation and Approach
We denote withR𝑑 the set of real valued𝑑−dimensional vectors. We
work with the family of undirected, connected graphs. We consider
two settings of interest in the paper: (i)General graphs with number
of nodes 𝑛, with adjacency matrix denoted by 𝐴 = [𝑎𝑖 𝑗 ] ∈ R𝑛×𝑛 .

(ii) Bipartite graphs with𝑚,𝑛 nodes in respective partitions with
the bi-adjacency matrix denoted by 𝐵 = [𝑏𝑖 𝑗 ] ∈ 𝑅𝑚×𝑛 . We denote
by 1𝑛 the vector of all ones in R𝑛 .

At a high level, the goal of this work is to learn node repre-
sentations by taking into account maximal clique structures in
the underlying graph. Representations learned in such a manner
contain rich information about the graph connectivity structure
at the local node level and the higher-order organization of the
nodes. Thus, they are useful for downstream applications. To this
end, the technical aspects of our approach to learn and evaluate
clique-guided node representations comprise three stages:
• Stage I: Efficient maximal clique extraction from the under-
lying graph via a novel probing technique.
• Stage II: Perform self-supervised node representation learn-
ing incorporating the learned maximal clique information.
• Stage III: Utilize the learned node representations on down-
stream applications.

The technical details of our approach for Stage I and Stage II are
discussed in the subsections below. Stage III forms the bulk of our
experimental results presented in Section 3, where we demonstrate
the effectiveness of learning clique-guided representations for vari-
ous graph datasets and compare them with related schemes.

2.2 Clique Extraction (Stage I)
It is known that the problem of finding all maximal cliques in a
graph is NP-complete [15]. Hence, we resort to a heuristic greedy
approach as an alternative. We consider instead the problem of
finding a maximal clique containing a node of interest, which we
call a probe. We consider a relaxed linear program formulation for
this problem, the solution of which can be rounded to integer values
to yield the maximal cliques containing the probe.

2.2.1 Cliques in general undirected graphs. The optimization pro-
gram for the clique containing the probed node 𝑝 in a general
undirected graph is given as follows:

max
x∈[0,1]𝑛

⟨x, 1𝑛⟩ (1)

subject to: 𝑥𝑖 + 𝑥 𝑗 ≤ 1 + 𝑎𝑖 𝑗 , ∀ 𝑖, 𝑗 ∈ [𝑛]
𝑥𝑝 = 1

The solution is given by vector x, which is constrained to have
value 1 at the probed node 𝑝 . The solution can be rounded to the
nearest integers in {0, 1}, denoting whether the corresponding node
is included in the clique.

The constraint 𝑥𝑖 + 𝑥 𝑗 ≤ 1 when 𝑎𝑖 𝑗 = 0 ensures that when
the nodes 𝑖 and 𝑗 are not connected, they cannot have a value of
1 simultaneously and be included in the clique. Thus, any node
not connected to the probed node 𝑝 cannot be included in the
solution for the probe, implying that we must only search in a 1-hop
neighborhood around the probed node 𝑝 to find its corresponding
maximal clique. The resulting optimization procedure is efficient, as
the search space depends on the degree of the probed node rather
than the total number of nodes in the graph.

Algorithm 1 presents a greedy scheme for finding a set of maxi-
mal cliques covering all nodes in the graph. We take as input the
adjacency matrix 𝐴 and an ordered list of nodes R ranked by some
importance measure (e.g., a centrality score of the nodes in the
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Algorithm 1 Greedy scheme for finding maximal cliques

Input: Symmetric adjacency matrix 𝐴 = [𝑎𝑖 𝑗 ] of size 𝑛 × 𝑛 of the
underlying undirected graph, list of node centrality rankings
in descending order (denoted by R).

Initialize: Empty set N𝑐 . Empty list 𝔏𝑐 .
1: while |N𝑐 | ≠ 𝑛 do
2: Consider the highest ranking node in R not present in N𝑐 .

Let the index of this node in the graph be 𝑝 .
3: Solve the Linear Program in (1) for probe at node 𝑝 .
4: Round the obtained solution x to integer values in {0, 1}.
5: Define N = {𝑖 : 𝑥𝑖 = 1, 1 ≤ 𝑖 ≤ 𝑛}, denoting the set of

nodes which are included in the clique.
6: Append N to the list of cliques 𝔏𝑐 .
7: Update the set of discovered nodes as:

N𝑐 ← N𝑐 ∪ N
8: end while

Output: List of cliques 𝔏𝑐

graph). In this paper, we use the PageRank algorithm [22] to gener-
ate these scores. We initialize an empty set N𝑐 , which stores nodes
that already belong to an extracted clique.

The algorithm starts by taking the highest-ranking node inR and
not yet in the N𝑐 . This node is the probed node, 𝑝 . The algorithm
then proceeds to solve the linear program in Equation (1) with 𝑝

and the adjacency matrix. The linear program can be solved with
any open-source solver (e.g., ECOS [6], OSQP [23], CVXOPT [2]).
The solution, x, is rounded to the nearest integer in {0, 1}. The
nodes in the clique have a value of 1 in the solution x, which we
store inN . We append the found clique to the clique list 𝔏𝑐 . Finally,
the nodes in the clique N are included in the set N𝑐 .

In the following iterations, the algorithm again picks the highest-
ranking node not in N𝑐 , terminating when all nodes in the graph
are included in some discovered clique (|N𝑐 | = 𝑛). At each iteration,
the probed node 𝑝 always ends up in the setN𝑐 . Thus, the algorithm
is guaranteed to terminate.

The idea of using a ranked list is that the nodes with the highest
centrality score are generally a part of a dense subgraph and have
large degrees. Thus, probing nodes in order of their centrality scores
ensures that larger cliques are found within the first few iterations
and the resulting procedure terminates quickly.

2.2.2 Bicliques in biparite graphs. The optimization problem in (1)
cannot directly solve for bicliques, since bipartite graphs can only
have connectivity between its two disjoint partitions. We propose
the following relaxed linear program for a pair of probes:

max
u∈[0,1]𝑚, v∈[0,1]𝑛

⟨u, 1𝑚⟩ + ⟨v, 1𝑛⟩ (2)

subject to: 𝑢𝑖 + 𝑣 𝑗 ≤ 1 + 𝑏𝑖 𝑗 , ∀ 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛]
𝑢𝑝 = 1, 𝑣𝑞 = 1

This program can be seen as a relaxation of the program con-
sidered in [12, Section 3.1], suitably modified to yield a maximal
biclique containing a pair of probed nodes, each lying in a separate
part of the graph. The desired solution is given by the pair u, v,
denoting the nodes belonging to the obtained biclique, with u from

Algorithm 2 Greedy scheme for finding maximal bicliques

Input: Bipartite adjacency matrix 𝐵 = [𝑏𝑖 𝑗 ] of size𝑚 × 𝑛 of the
underlying undirected bipartite graph, list of node centrality
rankings in descending order (denoted by R).

Initialize: Empty set N𝑐 . Empty list 𝔏𝑐 .
1: while |N𝑐 | ≠𝑚 + 𝑛 do
2: Consider the highest ranking node in R not present in N𝑐 .

Let the index of this node in the graph be 𝑝 .
3: Let 𝑞 be the highest degree neighbor of the node 𝑝 which

is not in N𝑐 .
4: Solve the Linear Program in (2) for probes at node 𝑝 and 𝑞.
5: Round the obtained solution u, v to integer values in {0, 1}.
6: Define N1 = {𝑖 : 𝑢𝑖 = 1, 1 ≤ 𝑖 ≤ 𝑚} and
N2 = { 𝑗 +𝑚 : 𝑣 𝑗 = 1, 1 ≤ 𝑗 ≤ 𝑛}, denoting the set of nodes
which are included in the biclique.

7: Append the obtained bicliqueN1∪N2 to the list of bicliques
𝔏𝑐 .

8: Update the set of discovered nodes as:

N𝑐 ← N𝑐 ∪ (N1 ∪ N2)
9: end while

Output: List of cliques 𝔏𝑐

the part of size𝑚 and v from the other part of the graph. The two
probed nodes 𝑝, 𝑞 are included in the biclique, which is captured by
the constraint 𝑢𝑝 = 1 and 𝑣𝑞 = 1. The constraint 𝑢𝑖 + 𝑢 𝑗 ≤ 1 when
𝑏𝑖 𝑗 = 0 ensures that nodes not connected across the partitions are
not included in the biclique. As before, this implies that only the
1-hop neighborhood around the probed nodes are candidates for
the biclique, narrowing the search space.

We present our proposedmethod of probing a bipartite graph and
finding a set of maximal bicliques covering all nodes in the graph
in Algorithm 2. The development is similar to that of Algorithm 1
but with pairwise probes on the graph partitions.

In the list of cliques 𝔏𝑐 generated by Algorithms 1 and 2, a node
may belong to multiple maximal cliques or bicliques. To utilize the
discovered cliques in node representation learning, we encode the
clique assignments of each node as a binary vector. Specifically, for
the case of an undirected, connected graph with 𝑛 nodes, consider
that Algorithm 1 produces𝑀 cliques. For a node 𝑖 ∈ [𝑛], we define
the𝑀-length binary vector c(𝑖 ) with the 𝑗𝑡ℎ entry for 𝑗 ∈ [𝑀] as:

c(𝑖 )
𝑗

=

{
1, if 𝑖 belongs to clique 𝑗

0, otherwise

A similar binary vector can also be constructed for the case of
bicliques. The clique assignment vectors for the the nodes {c(𝑖 ) }𝑛

𝑖=1
are passed to Stage II to learn node representations.

2.3 Representation Learning (Stage II)
We propose a joint training loss for learning node representations,
which simultaneously accounts for the graph reconstruction ob-
jective while integrating the clique assignment information of the
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Figure 2: The training framework for the self-supervised
learning of node representations (Stage II). The inputs are the
graph structure and the clique information from Stage I. The
learned node representations can be used in a downstream
task of interest (Stage III).

nodes. Formally, for the graph G with 𝑛 nodes and the clique as-
signments {c(𝑖 ) }𝑛

𝑖=1 from Stage I, this loss is given as:

𝐹 = 𝑓𝑟𝑒𝑐 (G) + 𝑓𝑐𝑙𝑖𝑞𝑢𝑒 ({c(𝑖 ) }𝑛𝑖=1) (3)

In (3), 𝑓𝑟𝑒𝑐 (G) is the reconstruction loss for learning node repre-
sentations. This loss comes from the base representation-learning
model, which typically relies on predicting the connectivity struc-
ture of G. This is often achieved through an encoder-decoder frame-
work where the latent node representations (output of encoder)
minimize some reconstruction criteria. For example, the Graph
Auto-Encoder [18] reconstruction loss comprises the cross-entropy
loss associated with predicting the entries of the graph’s adjacency
matrix via the node embeddings, while theDeep Graph Infomax [26]
reconstruction loss maximizes the mutual information between the
node representations and a global graph summary vector.

The second loss 𝑓𝑐𝑙𝑖𝑞𝑢𝑒 ({c(𝑖 ) }𝑛𝑖=1) in Equation (3), which we call
the clique loss, captures a clique assignment prediction loss for the
nodes. Specifically, using the intermediate node representations
obtained from the underlying base representation learning model,
we form a supervised learning task where the inputs are the node
representations and we seek to predict the clique assignment vec-
tors {c(𝑖 ) }𝑛

𝑖=1. In this work, we achieve this by training a simple
multilayer perceptron (MLP) model on the input representations
with a binary cross-entropy loss (as a node may possibly belong to
more than one clique). Thus, the latent node representations that
are learned to minimize 𝑓𝑟𝑒𝑐 (G) simultaneously predict the clique
assignment vector associated with each node.

A diagrammatic description of the training process is given in
Figure 2. At the end of the self-supervised training process, we
obtain representations for all nodes in the graph. These representa-
tions account for both the local neighborhood information (by min-
imizing the reconstruction loss) and the higher-order connectivity
information (by minimizing the clique loss). These representations
can then be passed to downstream tasks (Stage III).

Note that the clique loss 𝑓𝑐𝑙𝑖𝑞𝑢𝑒 ({c(𝑖 ) }𝑛𝑖=1) in (3) can be replaced
with the prediction of any other higher-order structure (e.g., clus-
ter label assignment). We include these alternatives as baselines
(Section 3) and demonstrate that integrating clique assignments
provides better performance than other higher-order structures.

3 EXPERIMENTAL RESULTS
We now provide quantitative results to demonstrate the effective-
ness of our clique-guided representation learning framework. We
compare our method to several baseline GNN architectures, on
multiples datasets, and also to other methods that use clustering
information to learn node representations.

3.1 Datasets and Downstream Tasks
We first describe the graph datasets and the associated downstream
tasks we used to evaluate learned node representations. We also
briefly discuss the clique (or biclique) structures obtained and com-
ment on their utility for learning better representations. Table 1
contains dataset statistics. Appendix ?? contains additional details
and network architectures for the downstream tasks.

3.1.1 MovieLens 100K [10]. This is a bipartite graph of user-movie
entities with a rating associated with each edge. A set of bicliques in
this dataset naturally groups together users who have similar movie
preferences. Using Algorithm 2 on this dataset yields 97 bicliques.

For the downstream task, we consider a like/dislike prediction
task to evaluate the representations. During evaluation, edge rep-
resentations of user-movie pairs are constructed by concatenating
the node representations.

3.1.2 Movie-Movie (100K). Derived from theMovieLens 100K dataset,
this a non-bipartite graph of movie connections in the underlying
graph. For a given movie-movie pair, we evaluate the Jaccard index
[13] between their user sets (say, given by𝑈1 and𝑈2) as:

𝐽 (𝑈1,𝑈 2) = |𝑈1 ∩𝑈2 |
|𝑈1 ∪𝑈2 |

For movie-movie pairs with non-intersecting user sets, 𝐽 (𝑈1,𝑈2) =
0. A movie-movie pair is connected if its Jaccard index is greater
than the mean of the Jaccard index over all connected pairs.

A clique in this graph groupsmovieswhich are frequentlywatched
together by the users, and thus might share similar themes or be-
long to a common genre. Algorithm 1 extracts 121 cliques from
the constructed movie-movie graph. We only keep cliques with
size greater than 70. This results in 51 cliques that cover about 90%
of all nodes in the movie-movie graph. Nodes that do not belong
to any of the 51 resulting cliques do not contribute to the clique
assignment loss in Stage II.

For downstream evaluation, we consider a multi-label prediction
task where we predict the genres a given movie belongs to.

3.1.3 MOOC dataset [19]. This is a bipartite graph comprising
actions participating students take throughout a course. A biclique
in this graph groups together students who take similar action
throughout the course and have potentially similar learning styles.
Algorithm 2 yields 94 cliques.

We consider a link prediction task for evaluating the representa-
tions based on predicting a set of edges/non-edges of the original
graph. The set of positive edges are held out when learning self-
supervised representations in Stage II.

3.1.4 Movie-Movie (1M). Similar to the Movie-Movie (100K) graph,
this graph is derived from the larger MovieLens (1m) dataset [10].
We only keep cliques with size greater than 90, which yields 160
cliques that collectively cover about 88% of all nodes in the graph.
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Table 1: Dataset statistics

MovieLens100K Movie-Movie (100K) ACT-MOOC Movie-Movie (1m)

# Nodes 2,625 1,682 7,114 3,706
# Edges 100,000 360,493 411,749 2,117,749

Downstream evaluation is performed via a multi-label genre pre-
diction task for the movies.

To assess the quality of the learned representations on the down-
stream task, we consider test accuracy and F1-score as the perfor-
mance metrics.

3.2 Representation Learning Models
The representation learning model in Stage II takes as input the un-
derlying graph structure with any associated features and the clique
information from Stage I, then constructs node representations in
a self-supervised manner. We consider the following models:
(i) Graph Auto-Encoder (GAE) [18]: Node representations are

learned in an encoder-decoder framework by reconstructing
the adjacency matrix of the underlying graph.

(ii) GraphSAGE [8]: This model learns a set of aggregator func-
tions that are used to construct node embeddings by utilizing
feature information from a node’s local neighborhood.

(iii) Graph Convolutional Networks (GCN) [17]: To learn the rep-
resentations in a self-supervised manner, we formulate a link-
prediction task utilizing edge representations formed by con-
catenating node representations obtained by GCN layers.

(iv) Deep Graph Infomax (DGI) [26]: This model relies on learning
node representations by sampling local patch information for
each node andmaximizing themutual information in the patch
and a global graph readout function. The optimization problem
for learning the representations via mutual information relies
on a contrastive learning approach.

For the downstream evaluation task for all datasets, we train
an MLP model on the learned representations to predict the asso-
ciated dataset labels. For edge prediction tasks (MovieLens100K
and MOOC datasets), the edge representations are constructed
by concatenating the node representations. Appendix ?? contains
implementation details for the models.

3.3 Baselines
Our proposed scheme to learn self-supervised node representations
relies on the optimizing the learning objective in (3), which utilizes
the local dense partitioning of the nodes via the clique loss. We
include comparisons with other partitioning methods that capture
higher-order connectivity and be used in place of the clique loss.
(i) METIS: The METIS software package [16] provides tools for

producing high-quality graph partitions for large-scale undi-
rected graphs in an efficient manner. The number of partitions
𝑘 to be produced is provided as input to the algorithm. In
our experimental results given below,METIS-𝑘 denotes the
METIS algorithm with 𝑘 number of partitions.

(ii) Louvain: Louvain partitioning [3] is a popular method for fast
community extraction in large scale graphs. The algorithm

does not take any inputs apart from the graph structure and
is based on modularity optimization.

(iii) Node2vec + 𝑘-means: Node2vec [7] is an algorithm for learn-
ing low-dimensional node representations for a graph by opti-
mizing a neighborhood-preserving objective. Using the tradi-
tional 𝑘-means clustering method on the resulting node repre-
sentations provides an effective way to construct graph parti-
tions. In our results provided below, node2vec + 𝑘-means (𝑘)
denotes the node2vec algorithm follows by 𝑘-means clustering
with 𝑘 input clusters.

(iv) No label: This baseline corresponds to providing no higher-
order connectivity information of the graph when learning the
representations in Stage II. This is the default representation
learning method of the base GNN models.

3.4 Results
We summarize the performance metrics for the different datasets
in Table 2 to Table 5. For each dataset, we provide the comparison
between our clique-based representation learning framework and
the different baselines described in Section 3.3. For each of these
higher-order structures (as well as the no-label baseline), we provide
the evaluation metrics for the associated downstream task averaged
over 5 runs, for each GNN model listed in Section 3.2.

We observe that across the board, utilizing higher-order infor-
mation structures to learn node representations leads to better
downstream performance than using only vanilla GNNs. More-
over, among the higher-order structures considered, our proposed
clique-guided node representations yield the best downstream per-
formance across almost all underlying GNN models and datasets.
We conclude that leveraging maximal cliques in addition to lo-
cal connectivity can lead to more informative representations for
downstream applications.

4 CONCLUSIONS AND FUTUREWORK
We proposed a framework for learning node representations guided
by maximal clique structures in the graph to capture higher-order
connectivity information of the nodes. Our heuristic method for
finding maximal cliques is based on optimizing a linear program
(LP), which can be done efficiently using any off-the-shelf LP solver.
Moreover, our training framework can be applied on top of any
popular base GNN self-supervised learning model in literature to
learn clique-guided representations. We demonstrate the effective-
ness of our method by evaluating the learned representations on
downstream tasks for various real-world datasets with different
base GNN models.

While cliques are effective in capturing higher-order connections,
one might also be interested in considering quasi-cliques, where we
can relax the requirement for complete connectivity, and instead
only ask for a fraction of edges to be present in the subgraph. These
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Table 2: Performance comparison for different techniques on the MovieLens 100K dataset.

Technique GAE GCN DGI GraphSAGE

Test acc. F1 score Test acc. F1 score Test acc. F1 score Test acc. F1 score
No label 69.5 0.742 67.7 0.727 70.5 0.748 69.3 0.738
Louvain 69.2 0.739 65.6 0.719 68.5 0.733 68.4 0.734
METIS-10 68.8 0.735 68.1 0.729 68.4 0.734 69.4 0.738
METIS-20 69.7 0.743 68.2 0.728 68.8 0.737 69.3 0.739

Node2vec + 𝑘-means (10) 69.1 0.737 67.7 0.727 68.9 0.739 69 0.738
Node2vec + 𝑘-means (20) 69.6 0.742 67.2 0.727 69.4 0.741 69.4 0.74
Node2vec + 𝑘-means (50) 69.5 0.743 67.8 0.729 69.7 0.746 69.4 0.742

Clique (ours) 70.5 0.749 69.1 0.739 70.5 0.752 70.1 0.744

Table 3: Performance comparison for different techniques on the Movie-Movie (100K) dataset.

Technique GAE GCN DGI GraphSAGE

Test acc. F1 score Test acc. F1 score Test acc. F1 score Test acc. F1 score
No label 91.4 0.336 91.2 0.338 91.3 0.356 90.8 0.332
Louvain 91.6 0.335 91.5 0.356 90.8 0.345 91.7 0.334
METIS-10 91.4 0.331 91.2 0.348 91.7 0.359 91.2 0.344
METIS-20 91.6 0.344 91.2 0.358 91.7 0.384 91.4 0.355

Node2vec + 𝑘-means (10) 91.4 0.328 91.3 0.359 91.3 0.349 91.2 0.346
Node2vec + 𝑘-means (20) 91.5 0.341 91.3 0.365 91.6 0.386 91.6 0.361
Node2vec + 𝑘-means (50) 91.5 0.337 91.2 0.354 91.6 0.366 91 0.342

Clique (ours) 91.7 0.351 91.5 0.383 91.9 0.409 91.1 0.369

Table 4: Performance comparison for different techniques on the ACT-MOOC dataset.

Technique GAE DGI GraphSAGE

Test acc. F1 score Test acc. F1 score Test acc. F1 score
No label 88.5 0.891 89 0.894 89.6 0.902
Louvain 90.3 0.906 91.6 0.918 90.9 0.912
METIS-10 90.7 0.91 92 0.922 90.3 0.908
METIS-20 91.6 0.918 91.9 0.92 91.5 0.918

Node2vec + 𝑘-means (10) 91 0.912 91.2 0.914 91.2 0.914
Node2vec + 𝑘-means (20) 91.1 0.913 91.6 0.918 91.4 0.916
Node2vec + 𝑘-means (50) 91 0.913 90.4 0.907 91.1 0.914

Clique (ours) 93.7 0.938 95.7 0.957 94.5 0.946

quasi-cliques can potentially yield larger overlapping structures
that can capture node dependencies at a larger scale than regular
cliques. We pose the experimental exploration of quasi-cliques as a
future step to the work in this paper. Another interesting direction
to explore is learning representations in a inductive manner using
clique structures. For example, the representation of a new node
can be derived as a function of the representations of other nodes
that appear in the same clique. For graphs without node features
or models that must be re-trained for new data, this provides a fast
and efficient way to learn representations for new nodes without
re-training. It is also of interest to see how such an approach can be
applied in conjunction with existing inductive GNN representation
learning approaches like GraphSAGE.

Our paper demonstrates the benefits of utilizing higher-order
connection information in learning rich latent representations. We
hope that researchers and practitioners alike can find inspiration to
build models capturing this rich structural information and perform
research in this direction.
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